
doi: 10.1098/rsta.1998.0287
, 2569-2590356 1998 Phil. Trans. R. Soc. Lond. A

 
J. M. Huntley
 
materials
Fluidization, segregation and stress propagation in granular
 

Email alerting service
 herecorner of the article or click 

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

 http://rsta.royalsocietypublishing.org/subscriptions go to: Phil. Trans. R. Soc. Lond. ATo subscribe to 

This journal is © 1998 The Royal Society

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;356/1747/2569&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/356/1747/2569.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


Fluidization, segregation and stress
propagation in granular materials

By J. M. Huntley
Loughborough University, Department of Mechanical Engineering,

Loughborough LE11 3TU, UK

Results from recent experimental investigations into the fluidization, size-segregation
and stress-transmission behaviour of model granular materials are described. Digital
high-speed photography and particle-tracking software are used to study the vibro-
fluidization of a two-dimensional powder. The dependence of granular temperature
on vibration frequency, amplitude and number of grains is compared with simula-
tions and a simple analytical model. Particle tracking at low base accelerations has
also shown that a single large intruder in a two-dimensional bed of monodisperse
particles moves upwards at the same speed as the smaller grains over a wide range
of accelerations, suggesting that convection is the key to size segregation under these
conditions. Force profiles have been measured under conical sandpiles by using a
simple elasto-optical technique, which provides a spatial resolution comparable to
the grain diameter. The results confirm the existence of counter-intuitive pressure
dips at the centre of the pile. Simple two-dimensional models for force transmission
in granular materials are reviewed; these are extended to three dimensions and to
lattices with perturbations induced by deformation of the grains or by polydispersity.

Keywords: contact-force measurement; granular temperature; sandpiles;
convection; high-speed photography; vibrated bed

1. Introduction

A significant body of literature has emerged recently on the physics of granular
materials (see, for example, Jaeger & Nagel 1992). The response to vertical vibra-
tion, in particular, has been studied extensively. A wide range of unusual phenom-
ena is observed (Evesque 1992), including heaping and convection rolls (Evesque
& Rajchenbach 1989), and size segregation (Knight et al . 1993; Duran et al . 1993,
1994). At larger vibration amplitudes, period-doubling instabilities can lead to wave
formation on the free surface (Douady et al . 1989; Pak & Behringer 1993), and even-
tually the system may become fully fluidized. The transmission of stress within a
granular material may also produce counter-intuitive results, leading, for example,
to a local minimum in the normal component of stress under the peak of a conical
pile of sand (Smid & Novosad 1981). This paper reviews some of the research carried
out into these areas by the author and co-investigators over the past four years.

2. Fluidization

Previous experimental studies of two-dimensional systems have generally considered
the case of surface fluidization, whereby a condensed phase and fluidized phase coex-
ist (Clement & Rajchenbach 1991). Full fluidization in one and two dimensions has
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been investigated numerically by molecular dynamics and event-driven simulation
techniques. Luding et al . (1994a, b) obtained the conditions required to observe the
condensed and fluidized regimes and found empirical scaling relations for the height
of the centre of mass for the system of grains. Fluidization behaviour can also be
modelled by using kinetic theories of rapid granular flow. The reviews by Campbell
(1990) and Savage (1984), on computer simulations and theory, respectively, discuss
the concept of granular temperature and its relevance to granular materials. For the
results presented here, we define granular temperature E0 as the mean kinetic energy
of a particle measured in the centre-of-mass frame, i.e.

E0 = 1
2mc

2, (2.1)

where m is the mass and c is the speed of the grain.

(a) Instrumentation

The fluidization and segregation experiments were carried out by using an electro-
magnetically driven shaker. The moving part of the shaker is a platform 156 mm in
diameter which can attain a maximum peak-to-peak displacement under sinusoidal
excitation of 25.4 mm, and a maximum velocity and acceleration of 1.06 m s−1 and
70g (g = 9.81 m s−2), respectively. A cell made up of two glass plates, 165 mm wide
by 285 mm high, was mounted on the moving platform. The plate separation was
controlled by spacers; by adjusting the plate spacing to exceed the particle diameter
by 0.05 mm, a close approximation to an idealized two-dimensional model powder
was obtained. Vertical accelerations were monitored by using piezoelectric accelerom-
eters, and displacements of the vibrating cell were measured by using a calibrated
laser-displacement meter.

A Kodak Ektapro 1000 high-speed video camera system was used to record the
two-dimensional motion of the particles, with the resulting images stored digitally
on memory boards within the camera. Up to 1600 full-size images of 239×192 pixels
can be recorded at a framing rate of up to 1000 frames per second, giving a total
of 1.6 s of recording time. Images are transferred by GPIB interface to a Sun IPX
SPARCstation, where the in-plane coordinates of particle centres are located by using
image processing software. There are three steps to the image analysis.

1. The edges of the particles are detected by means of a Sobel filter.

2. The positions of the centres are calculated by Hough transformation of the
resulting image.

3. The positions of all the detected particles within the field of view are tracked
from frame to frame, from which velocity distribution functions can be calcu-
lated.

These procedures are described in detail by Warr et al . (1994).

(b) Two-dimensional results

The instrumentation described in § 2 a was used to investigate the fluidization of
two-dimensional model powders consisting of 5 mm diameter steel spheres (Warr et
al . 1995). One-dimensional powders have also been studied, both experimentally and
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Figure 1. Effect of system size on the average packing fraction profiles. (a) Crosses, triangles,
squares and diamonds correspond to N = 27, 40, 60 and 90, respectively; (b) N = 90 data with
best-fit Boltzmann distribution.

theoretically (Warr & Huntley 1995; Warr et al . 1996), but only the two-dimensional
results will be described here. The number of spheres in the cell, N , took the values
27, 40, 60 and 90, and for each of these, experiments were carried out with vibra-
tion amplitudes A0 of 0.5, 1.123, 1.84 and 2.12 mm. The base frequency was 50 Hz
throughout. One high-speed sequence was recorded at three different heights for each
of these combinations of N and A0, resulting in a total of nearly 80 000 frames of
data.
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Figure 2. Horizontal velocity distribution: experimental (discrete points)
with best-fit Gaussian.

Figure 3. Horizontal and vertical granular temperature profiles from Gaussian fits to velocity
distributions (A0 = 2.12 mm, N = 90). Crosses and diamonds correspond to the x and y
components of the granular temperature, respectively.

The measured packing fraction for all four N -values at A0 = 2.12 mm, averaged
across the width of the cell, are shown in figure 1a. The data for N = 90 are replotted
on log-linear axes in figure 1b, together with a linear fit to the exponential tail
of the distribution. The gradient of the best-fit line provides one measure of the
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Figure 4. Granular temperature as a function of peak base velocity.

granular temperature, E0. E0 can also be estimated directly from the width of the
measured velocity distribution functions. Figure 2 shows the distribution for the
horizontal component of velocity at a height in the cell of 65 mm, where N = 90
and A0 = 2.12 mm. Circles correspond to data points, and the line is the best-fit
Gaussian curve. This method allows the spatial variation of E0 within the cell to
be mapped out. Figure 3 shows the results from the experiment with N = 90 and
A0 = 2.12 mm. The vertical component of temperature is higher than the horizontal,
because energy is supplied through vertical motion of the cell. There is a general
decrease in temperature with height, except possibly for an increase at the free
surface.

Luding et al . (1994a, b) proposed the following scaling relationship between E0
and A0 and N , based on their simulation results:

E0 ∝ (A0ω)α[N(1− ε)]−β, (2.2)

where ω is the angular frequency of the base and ε is the restitution coefficient. The
exponents α and β were found by Luding et al . (1994a, b) to take the values 2.0 and
1.0, respectively, for a one-dimensional powder, and the values 1.5 and 1.0 in two
dimensions. An α value differing from 2 implies that the mean particle speed does
not scale linearly with the mean speed of the vibrating base. Figure 4 shows the
variation of E0 with A0ω as calculated from the speed (rather than from vertical or
horizontal velocity) distribution functions. N has been normalized by nb (the cell
width divided by the grain diameter), and the effects of system size have been scaled
out by using the average exponent β = 0.60. The data points fall on a line with a
gradient α = 1.41± 0.03. A third method of calculating E0 is from the height of the
centre of mass of the fluidized material; all three methods resulted in α values in the
range 1.3–1.4 and β values between 0.3 and 0.6.
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(c) Two-dimensional model

Warr et al . (1995) proposed a simple model for a low-density vibro-fluidized gran-
ular material undergoing almost-elastic collisions. The granular temperature was
assumed to be constant throughout the material; from the resulting Boltzmann dis-
tribution of particle density, the rate of energy dissipation could be calculated. The
value of E0 set up under steady-state conditions for a given excitation could then
be obtained by equating this to the rate of energy input from the base. Warr et al .
(1995) assumed the mean free path between collisions, λ, took the standard value
from two-dimensional gas-kinetic theory,

λ =
1

2nd
, (2.3)

where n is the number density and d is the grain diameter. This resulted in predicted
α and β values of 2 and 1, respectively; both were therefore significantly higher
than the experimental and simulation values. At high packing densities, however,
the mean free path, λh, may differ from equation (2.3) because the particles are no
longer randomly distributed. Each grain is surrounded by, on average, six nearest
neighbours, whose relative positions become progressively more correlated as the
density increases. In effect, the nearest neighbours act as a cage, the size of which
defines λh:

λh =
B

n1/2 , (2.4)

where B is a numerical constant of order unity (Helal et al . 1997). The different
dependence on n and d for the two mean free paths results in differing scaling laws
for the granular temperature. In particular, E0 is predicted to scale as (A0ω)4/3

and as N−1/3, in closer agreement with the experimental results (Huntley 1998a).
When the number of grains per unit length of cell is increased significantly above the
values used in these experiments, the validity of the assumption of a constant gran-
ular temperature becomes questionable. Helal et al . (1997) suggested a model which
involves solving two coupled differential equations for the packing fraction and gran-
ular temperature. There is good qualitative agreement with the experimental results
and with molecular dynamics simulations (including the unexpected rise in granular
temperature at the free surface). Currently, the main barrier to the effective use of
such an approach is the difficulty in specifying the boundary conditions (packing
fraction, temperature and temperature gradient) at the base of the cell.

3. Size segregation

The segregation of vibrated powders according to particle size is a well-known phe-
nomenon, and can cause significant problems during handling. Several microscopic
mechanisms have been presented in the literature. In the low-amplitude and high-
frequency regime, convection rolls, driven by particle-wall friction, control segregation
(Knight et al . 1993). The large grains are seen to be carried upwards at the same
velocity as the small ones, leading to a continuous ascent. At very low accelerations,
recent experiments on two-dimensional systems have identified a transition from a
continuous to an intermittent, step-like, motion as the ratio of large to small particle
sizes, Φ, decreases below a critical ratio (Duran et al . 1994). The experiments have
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Figure 5. Images from size segregation experiments (see text for details).

indicated that segregation in this regime is no longer driven by convection, with the
larger particles rising relative to the background particles. An arching-effect model
has been proposed (Duran et al . 1993) to explain this transition.

The ability to measure and track particles with the Ektapro camera has been used
to investigate the transition between the continuous and intermittent regimes (Cooke
et al . 1996). The experiments were carried out by using a monolayer of approximately
5000 oxidized duralumin spheres (diameter of 2 mm) in the test cell, together with a
single large ‘intruder’ particle. The intruders were 1 mm thick duralumin discs sup-
ported by three 2 mm diameter chrome steel sphere spacers. The spacers were pushed
into 2 mm diameter holes drilled near the circumference of the intruder at 120◦ inter-
vals. Γ is used to denote the peak acceleration normalized by g, the acceleration due
to gravity. The vibration frequency throughout was 10 Hz.

Figure 5 shows three frames of an intruder with Φ = 7, taken from the low-
acceleration, Γ = 1.17, regime. Regions of disorder often appear around the intruder
(figure 5a). Small gaps may open up below, into which particles can be pushed
by collective block motion. Large gaps and avalanche events are not observed. In
figure 5b, a slip plane is captured below the intruder resulting in the upper block of
particles moving upwards. Horizontal slip planes are also often observed (figure 5c).

In figure 6 the measured position of the intruder is plotted against time for a
range of reduced accelerations. These plots are at a constant size ratio, Φ = 7. The
results in figure 6a correspond to the continuous regime, whereas in figure 6b the
acceleration is lower (Γ = 1.17), and the intermittent motion is clearly visible. The
results in figure 6a were obtained by filming at one frame per cycle; in figure 6b a
frame was recorded every 48 cycles.

Trajectory maps of all the particles in the field were calculated for several of
the experiments. Figure 7a shows results from one experiment with a size ratio
Φ = 7, and an acceleration of Γ = 1.65. This corresponds to a regime of quite strong
convection; the intruder moved over the field of view in 266 frames, as indicated by
its trajectory. The other trajectories all show the position of the background particles
relative to the intruder disc. A similar plot is shown in figure 7b, but in this case the
acceleration was reduced to Γ = 1.32 so that we are in the regime with intermittent
rise characteristics. The trajectories still resemble those of figure 7a, showing that
the intruder and background particles rise at the same average rate in a collective

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2576 J. M. Huntley

Figure 6. Intruder ascent diagrams for the (a) continuous and (b) intermittent regimes.

motion; the intruder moved over the field of view in 1355 frames. The intermittent
motion of the intruder appears to be due to the relatively low frequency of slip events,
each of which causes the intruder (and surrounding particles) to move upwards in
a finite jump. A stable intruder appears to be present at all times, so that the slip
events do not provide a driving force that pushes the intruder looking for stable
positions; rather, intruder jumps are related to the height a block of particles moves
during a slip event. These results and conclusions are in contrast to the concept of
the intruder sampling a configuration space of stable-unstable positions as it moves
upwards relative to the surrounding particles (Duran et al . 1993, 1994).
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Figure 7. Trajectory maps for intruder and background particles: (a) Γ = 1.65; (b) Γ = 1.32.

4. Contact-force distribution beneath a granular pile

The transmission of stress within a granular material under quasi-static conditions is
currently not well-understood. The difficulty in developing adequate theories arises
for two main reasons: firstly, material nonlinearity (for example, the stiffness is zero
in tension, non-zero in compression); and secondly, the lack of a unique force distri-
bution for a given arrangement of the grains. One interesting example is the pressure
distribution beneath a conical sandpile, in which, intuitively, one expects the pres-
sure to be at a maximum at the centre. Experimental measurements have, however,
shown a significant local dip at this point (Smid & Novosad 1981). This section sum-
marizes a technique for measuring the normal contact forces exerted by the grains of
a granular material on a boundary, and its application to the measurement of stress
profiles beneath loosely packed conical piles (Brockbank et al . 1997).

The force distribution was determined by measuring the elastic deformation of a
transparent silicone rubber surface on which the pile was constructed (see figure 8).
The rubber layer (2.25 mm thick) was cast in situ on a glass flat. A hexagonal close-
packed (HCP) monolayer of steel ball-bearings (2.5 mm diameter) on top of the
rubber acted as a blanket of pressure sensors. The diameter of the contact region
between a given ball and the rubber was measured by using an optical microscope
and was related directly to the normal force acting on the ball.

The granular materials used were chosen for their variation in physical and geo-
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Figure 8. Experimental apparatus to measure the force profile beneath the test piles.

Figure 9. Pressure profiles from a lead-shot pile. Circles, ball-bearing monolayer;
diamonds, lead shot.

metrical properties. Lead shot had the highest density, and the mean bead diameter
was chosen to match that of the ball bearings to allow force measurements to be
made on the same scale as the individual particles. Sand was used for comparison
with the results of previous investigators (Smid & Novosad 1981). Two sizes of glass
bead (mean diameters of 180 and 560 µm with a standard deviation of ca. 10%) were
used to investigate the effect of particle size distribution; the effect of the friction
coefficient was studied by etching the larger glass beads with a chemical etchant.
Two etchant strengths increased the angle of repose by 2◦ and 4◦, respectively. The
piles were formed by pouring from a funnel at a fixed height.

The results of some of the pressure measurements made under 22 different piles of
diameter ca. 200 mm are given in graphical form in figures 9 and 10. Figure 9 shows
a typical lead-shot pile profile as measured from a single experiment. Each point
represents a single contact-diameter reading. The force values show large variations
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Figure 10. Pressure profiles averaged over several experiments (number of piles averaged in
parentheses). (a) lead shot (5); (b) sand (3); (c) large glass beads (3); (d) small glass beads (3).

from point to point; since the diameters of the steel balls and lead grains were closely
matched, this therefore represents the true fluctuations in contact forces in such a
pile. The contact forces were found to follow a probability density function that was
approximately negative exponential in form.

The experiment was repeated several times with each material (typically three
times; five times with the lead shot), to reduce the effect of the natural contact-
force fluctuations. All the results for a given material were then averaged; further
averaging was also done within discrete radial ranges (bins). Some of the results are
shown in figure 10, in which the error bars represent the standard deviation in the
mean of the pressure values averaged. Significant pressure dips were found to occur
with sand (figure 10b), and to a lesser extent with the small glass beads (figure 10d).
An increase in glass-bead diameter by a factor of three resulted in almost complete
suppression of the dip, regardless of whether the beads were smooth (figure 10c) or
etched. Likewise, the much larger lead shot (figure 10a) showed no central minimum.

5. Microscopic models

Numerical approaches (Luding 1997; Hemmingsson et al . 1997) and analytical solu-
tions (Edwards & Oakeshott 1989; Bouchaud et al . 1995; Edwards & Mounfield
1996; Wittmer et al . 1997; Bagster 1978, 1982; Liffman et al . 1992, 1994; Hong 1993;
Huntley 1993; Opie & Grindlay 1995; Grindlay & Opie 1995) have been developed to
try to explain the sandpile pressure-dip phenomenon. None has so far succeeded in
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providing a completely satisfactory explanation from first principles, for the reasons
mentioned in § 4.

The theoretical solutions fall into two main camps: continuum approaches (Ed-
wards & Oakeshott 1989; Bouchaud et al . 1995; Edwards & Mounfield 1996; Wittmer
et al . 1997) and microscopic models (Bagster 1978, 1982; Liffman et al . 1992, 1994;
Hong 1993; Huntley 1993; Opie & Grindlay 1995; Grindlay & Opie 1995). Of the
former, the approach by Wittmer et al . (1997), in which the orientation of the stress
tensor is assumed to be constant at a given point in the pile throughout the process
of heap formation, has proved the most successful so far in providing good agreement
with experimental data. The microscopic models are somewhat simplistic, requiring,
for example, the assumption of a regular lattice of grains, but, nevertheless, can be
useful in giving exact analytical solutions which may provide insight into the more
complicated real-life problem. The simplest of these is a pile of uniform smooth discs
balanced on a rough floor on a regular diamond lattice (Bagster 1978; Liffman et al .
1992; Hong 1993). This may be modified by randomness in the positions of the grains
in the base (Bagster 1982), vacancies in the pile (Huntley 1993), friction (Grindlay
& Opie 1995) and the presence of horizontal contacts between grains (Liffman et
al . 1994). A ‘horizontal contact’ between two grains refers to the situation where
the grain centres and contact point are at the same height. The latter modification
produced interesting results: in general terms, horizontal compressive forces generate
a dip in the vertical component of force at the centre of the pile (Hemmingsson et al .
1997; Liffman et al . 1994), whereas horizontal tensile forces generate a peak (Opie
& Grindlay 1995).

The two-dimensional regular-lattice model (Liffman et al . 1992; Hong 1993) is
briefly described in § 5 a, followed by its extension into three dimensions (§ 5 b).
Finally, in § 5 c, results from a perturbation analysis are presented that show the
influence of polydispersity and small deviations from the regular lattice due to defor-
mation of the grain contacts.

(a) Two-dimensional model

The regular-lattice model (Bagster 1978; Liffman et al . 1992; Hong 1993), which
provides the starting point for the analysis in §§ 5 b, c, is shown in figure 11. It consists
of p − 1 layers of discs, each of diameter d; p = 10 in this example. It is convenient
to use a non-orthogonal coordinate system, (i, j), with axes along the surface diago-
nals. The main assumptions made are, firstly, that the contacts are frictionless; and
secondly, that there are no horizontal contacts. These assumptions are necessary in
order to provide a unique solution for the force field. The pile is only stable if the
floor on which it is standing is rough, and thereby capable of providing a horizontal
force inward to the centre of the heap. The roughness is assumed here to be due to
asperities of the same spacing and diameter as the discs, which avoids the need for
friction at the contacts. The bottom row of the pile (layer p− 1) acts as this layer of
asperities. The horizontal spacing of the bottom layer is chosen to be large enough
to prevent horizontal contacts anywhere in the pile, i.e. the angle of repose, θ, is less
than π/3. The horizontal extent of the bottom layer is 2d(p− 1) cos θ.

The normal forces acting along the i- and j-axes are denoted by I and J , respec-
tively. There can be no tangential component due to the assumption of frictionless
contacts. Resolving the four forces, I(i, j), I(i + 1, j), J(i, j) and J(i, j + 1), acting
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Figure 11. Model granular pile arranged on a diamond lattice. The pile consists of p− 1 layers
(p = 10 in this example). The support discs in the lowest layer are regarded as equivalent to the
asperities on a rough floor.

on grain (i, j), both horizontally and vertically, results in two recurrence equations:

I(i+ 1, j)− I(i, j) = W/2s, (5.1)
J(i, j + 1)− J(i, j) = W/2s, (5.2)

where W = mg is the weight of the disc (m is the mass) and s is sin θ, where θ is the
angle of repose. From equations (5.1) and (5.2), the force distribution throughout
the pile is obtained as

I(i, j) = (i− 1)W/2s, (5.3)
J(i, j) = (j − 1)W/2s. (5.4)

The total vertical component of force on a disc is proportional to (I + J), and since
i + j = p for the bottom layer, equations (5.3) and (5.4) show that the vertical
component of force on the bottom layer is uniform across the pile.

(b) Three-dimensional model

Extension of the two-dimensional model in the previous section to three dimensions
is straightforward for the case of a HCP ABCABC. . . structure. A set of three axes,
i, j and k, is now required as shown in figure 12, which, as in two dimensions, follows
the natural directions of contacts. I(i, j, k), J(i, j, k) and K(i, j, k) are the contact
forces acting on the particle (i, j, k) from above, along their respective axes. By
choosing the angle θ between the axes and the horizontal as less than cos−1(1/

√
3),
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Figure 12. HCP structure (ABCABC . . . ) of identical spheres.

the perfectly close-packed value, there are no horizontal forces between the particles
in a given layer. Each particle then experiences six contact forces, three from above
and three from below. Resolving the forces vertically and horizontally once again
results in recurrence relations for I, J and K, which can be solved to give

I(i, j, k) = (i− 1)W/3s, (5.5)
J(i, j, k) = (j − 1)W/3s, (5.6)
K(i, j, k) = (k − 1)W/3s. (5.7)

All the particles in a given layer have i+ j + k = const. and therefore I + J +K is
also constant. The vertical force component is proportional to I + J +K and, as in
the two-dimensional case, is therefore also constant across a given layer in the pile.

It is clear that in a real sandpile, this perfect structure and unique coordinate
directions will not exist. The model can be extended relatively easily, however, by
retaining the idea of the forces being transmitted at an angle to the vertical, but
eliminating the preferred directions of the HCP pile. The force is therefore assumed
to be transmitted uniformly through a conical shell, rather than down the three legs
of the ideal HCP structure.

The new arrangement is shown in figure 13a. The mass element dM is supported
by a conical shell and exerts pressure on the floor over an annular ring. The load
per unit length of the ring is proportional to dM/R, where R is the distance from
dM to the ring. The pressure distribution could be calculated by a volume integral
over the entire cone. However, an equivalent approach is to consider a single point
on the base and to add up the forces due to all the mass elements that contribute to
the force at that point. All such elements lie on an inverted cone (denoted cone B)
as shown in figure 13b. The stress, σij , at position x0 along the diameter of the base
can be written

σij(x0) ∝
∫

area

Xij

R
dA, (5.8)

where the integral is over the surface area of cone B that lies within the sandpile
(cone A), R is the distance between x0 and a point on the cone, and Xij is a function
to resolve the force into normal or shear stresses as required. dA is the small element
of area containing mass dM , lying at polar coordinates (r, φ). z0 is the height of the
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Figure 13. Model for force propagation in a randomly packed medium. (a) Force propagates
through a conical shell rather than down the three legs of the HCP structure. (b) All points of
cone B then contribute to the pressure at point O on the base of the pile. The symbols used are
explained in the text.

cone and r0 is its radius measured at the base. α is the angle of repose of the pile
and θ (greater than α) is the angle of inclination of the contributing shell.

Equation (5.8) for the stress distribution can now be written (by using the fact
that R ∝ r and dR ∝ dr):

σij ∝
∫ π

−π

∫ rc

0
Xij dRdφ =

∫ π

−π
Xijrc dφ, (5.9)

assuming that Xij is independent of R. rc = rc(φ) is the locus of the line of inter-
section of the two cones.

In the HCP structure, the force vectors pointed directly along the diagonals.
Extending this to the conical-shell model, the force due to a point on the contributing
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Figure 14. Fits of ‘conical-shell’ model stress profiles to normal and shear stress measurements
obtained by Smid & Novosad (1981). (a) Sand, normal stress; (b) sand, shear stress.

cone acts along the line joining it to the vertex of the cone (the point on the base of
the pile). The form of Xij is, therefore,

Xzz = sin θ, (5.10)

for the normal component, and

Xxz = cos θ cosφ, (5.11)

for the shear component along the diagonal. There is no shear component perpendic-
ular to the diagonal (σxy = 0) due to the symmetry of the problem. The equations
of shear and normal stresses at the base of a conical pile can thus be written

σzz =
∫ π

−π
κrc sin θ dθ, (5.12)

σxz =
∫ π

−π
κrc cos θ cosφ dφ, (5.13)

where κ is a normalization constant.
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It is to be expected that the lowest stress at the centre will be produced when
θ = α, since this corresponds to the case of the weight at the centre of the pile being
supported as far away from the centre as possible. The integral can then be done
analytically to give the normalized stress distribution:

σzz = (1− (x0/r0)2)1/2. (5.14)

It is interesting to note that the maximum of this distribution is at x0 = 0: thus,
even the conditions most conducive to spreading the load to the edge of the pile
fail to produce a pressure dip. Extension of the model by allowing propagation over
a range of angles, rather than just a single cone angle θ, does not result in a dip
either since the solution in this case is just a linear combination of the basic conical-
shell solutions. The conclusion to be drawn from this analysis, therefore, is that the
transmission of force in a sandpile is, in general, non-axisymmetric, presumably as a
result of an anisotropic network of contacts set up during the formation of the pile.

It is, nevertheless, instructive to compare the model’s predictions with experi-
mental data. A sensitive test is to compare its predictions of the normal and shear
stresses simultaneously. Equations (5.12) and (5.13) were fitted to some of the Smid
& Novosad (1981) data by scaling the data for the correct κ value while varying
θ, until the least-square error was obtained. Figure 14 shows the data along with
the best-fit curves. The value of θ used to obtain this fit was 0.989 rad (56◦), which
may be compared with the value for a perfect HCP structure in which a diagonal
makes an angle of 54.7◦ to the horizontal. For such a simple model, the functional
fit appears to be quite reasonable although, as expected, the central dip in the data
is not reproduced.

(c) Perturbation analysis

In this section, results from a two-dimensional analysis of the effect of small devi-
ations from the perfect diagonal packing arrangement are summarized (Huntley
1998b). Two sources of irregularity are considered: (i) elastic (Hertzian) deforma-
tion of the grain–grain contacts; and (ii) systematic variations in particle size with
position in the pile. The changes in stress distribution for both cases can be calculated
analytically to first order in the parameter describing the perturbation.

The analysis is carried out in two steps. First, the displacement vector of each
grain from its regular-lattice position (figure 11), denoted by r(i, j), is determined as
a function of the disc sizes throughout the pile. Second, the equations of equilibrium
for disc (i, j) can be satisfied by the superposition of forces δI(i, j) and δJ(i, j)
acting along the i- and j-axes, respectively, which are related to the first and second
derivatives of r(i, j) with respect to i and j. This is illustrated in figure 15: for the
distorted lattice, the forces no longer propagate independently along the i- and j-
axes, as described by equations (5.1) and (5.2), but a fraction of the force along one
axis can instead switch to the other axis. Integration of the forces δI and δJ from
the free surfaces allows the total deviation in the vertical force component to be
calculated at the base of the pile.

The result for a large sandpile (p→∞) with elastically deforming grains is

δF (ξ) =
ε

8 cos2 θ
{(1 + ξ)β+1 + (1− ξ)β+1

− (β + 1)[(1 + ξ)(1− ξ)β + (1− ξ)(1 + ξ)β ]}, (5.15)
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Figure 15. Forces acting on disc (i, j) in the distorted lattice. The centres of nearest
neighbours are shown as •.

where δF (ξ) is the fractional change in normal load, ξ is the normalized position
along a diameter under the heap (−1 < ξ < 1), ε is the fractional change in diameter
of the disc at the centre of the pile (i = j = 1

2p) due to the deformation, and β is the
exponent in the nonlinear force–displacement relationship for Hertzian contacts (β =
2
3 for spheres). This is plotted in figure 16 for the case ε = 0.01, β = 2

3 , and with a
horizontal separation of particle centres of 1.2d. The results of a numerical simulation
(p = 128) are also shown for comparison. The numerical solution involved calculating
the exact displacement and force-distribution fields and shows good agreement with
the first-order theoretical results. The magnitude of the pressure reduction (around
1.5% at the centre of the pile relative to the edges, for a maximum grain deformation
of 1%) shows that while grain deformation might have a significant influence for low-
modulus materials, it is unlikely to be the cause of the dip for most of the materials
reported in experiments to date.

Variations in initial grain size are, however, a more plausible source of the necessary
lattice distortions. Systematic variations in particle diameter with position in the
pile can occur due to size segregation and stratification phenomena occurring during
its formation (Makse et al . 1997). Stratification in particular can result in strong
gradients in particle size in a direction normal to the free surface. A very simple
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Figure 16. Non-dimensional perturbation in vertical force at base of pile due to elastic defor-
mation at contacts (ε = 0.01 and β = 2

3 , corresponding to Hertzian deformation for contact
between spheres). Continuous line: first-order analytical solution (equation (5.15)); discrete sym-
bols: exact numerical solution for p = 128.

Figure 17. Non-dimensional perturbation in vertical force at base of pile due to gradient of
particle sizes from the centre to the free surfaces (ε = 0.01). Continuous line: first-order analytical
solution (equation (5.17)); discrete symbols: exact numerical solution for p = 128.

model of such a sandpile, in which the disc diameter, d′, varies linearly with distance
from the nearest free surface:

d′(i, j) =

{
d+ a0i (i < j),
d+ a0j (i > j), (5.16)
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results in a normalized force perturbation distribution:

δF (ξ) =
ε

4 sin2 2θ
[(4 cos 2θ − 3)(1 + ξ)2

− 2(1 + cos 2θ)(1 + ξ)(1− ξ) + (1− ξ)2] (−1 < ξ 6 0), (5.17)

where δF (−ξ) = δF (ξ) and ε = pa0/(2d) is the total fractional change in disc
diameter between the surface and centre (1

2p,
1
2p) of the pile. This result was derived

again for the limiting case p → ∞. All piles, regardless of size (provided of course
p → ∞ is a good approximation), having a given fractional change in particle size
from the centre to the edge will therefore have the same fractional pressure change.
Figure 17 shows δF (ξ) for the case ε = 0.01, i.e. the grains at the centre are 1%
larger than those at the free surfaces. There is seen to be good agreement with an
exact numerical solution calculated for a pile of size p = 128. The magnitude of
the pressure dip scales in proportion to ε, and is positive (i.e. a pressure peak) for
negative ε (i.e. when the small grains are at the centre). For the 1% size change
considered here, the pressure dip at the centre relative to the edge is around 2.2%.
The standard deviation in particle size was around 10% for the glass beads (both
large and small) and over 50% for the sand grains in the experiments described in
§ 4. Although the model is probably too simplistic to draw firm conclusions, it seems
plausible, therefore, that polydispersity can have a significant effect on the pressure
profile. The details of the segregation and stratification processes occurring during
the pile formation also seem likely to exert an important influence on the stress
distribution.

6. Conclusions

Vibration of relatively small numbers of grains in two dimensions results in a sta-
tionary non-equilibrium state that closely approximates the equilibrium state for
a gas at a uniform temperature, in which the density and speed distributions are
characterized by the classical Maxwell–Boltzmann distribution. The mean particle
speed is not proportional to the peak speed of the base; a simple power-balance
model predicts upper and lower bound scaling exponents which are consistent with
the experimentally observed values.

The main conclusion from the segregation experiments is that the intruder disc
rises at the same speed as the background particles over the entire range of accel-
erations studied. If this phenomenon is termed convective, then the mechanism of
segregation is driven by convection rolls over all accelerations. Previous studies which
indicate that convection is absent at low accelerations (i.e. upwards motion of the
intruder is not accompanied by upwards motion of the surrounding particles) and
that geometrical effects strongly influence the segregation mechanism, are not sup-
ported by these observations.

The experimental measurements of force distribution under a sandpile have con-
firmed the existence of a counter-intuitive pressure dip at the centre of the pile, at
least for some of the granular materials tested. The magnitude of the dip was largest
for piles made of sand; for glass spheres it appeared to be dependent on particle size
distribution but not on the grain–grain friction coefficient. The main conclusions to
be drawn from the microscopic models described in the paper are, first, that the
transmission of force in a sandpile is in general non-axisymmetric, and, second, that
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local changes in packing geometry caused by segregation and stratification can be
expected to exert a significant influence on the stress distribution.

The research summarized in this paper benefited from experimental and theoretical input from
S. Warr, R. Brockbank, R. C. Ball, W. Cooke, G. T. H. Jacques and H. T. Goldrein; technical
support from D. Johnson, R. Flaxmann and P. Bone; and useful discussions with C. C. Mounfield,
S. F. Edwards, J. E. Field and E. M. Terentjev. The model described in § 5 b was developed during
discussions with R. C. Ball and R. Brockbank, and figure 14 was prepared by R. Brockbank.
Funding from the Department of Trade and Industry, the EPSRC, Unilever Plc, ICI Plc, Zeneca
Plc, Schlumberger Cambridge Research and Shell International Oil Products is also gratefully
acknowledged.
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